# The IS Curve and Aggregate Demand

Vivaldo Mendes Instituto Universitário de Lisboa (ISCTE-IUL) vivaldo.mendes@iscte-iul.pt

2025-02-24

## 1. The Components of Aggregate Expenditure

#### The Aggregate Demand for G&S

At the level of the entire economy, there are two sides in the market for Goods & Services (G&S):

- The *Demand side*: G&S are demanded, which is translated into a a set of "Planned Expenditures"
- The *Supply side* : G&S are produced/supplied at a certain market price.

### The Aggregate Demand for G&S

The total amount of planned expenditures on G&S, which we will call by *aggregate demand* (D) is given by:<sup>1</sup>

$$D = C + I + G + NX$$

- C: Personal consumption expenditures on G&S
- I: Investment expenditures on G&S
- G: Government purchases of G&S
- *NX*: Net exports of G&S

#### **Personal Consumption Expenditures**

In a developed market economy, personal consumption expenditures C are explained by three fundamental variables:<sup>2</sup>

$$C = \overline{C} + c \cdot \underbrace{(Y - T)}_{=Y_D} - b \cdot r$$

<sup>&</sup>lt;sup>1</sup>The textbook uses  $Y^{pe}$  instead of D. For simplicity we choose D for "*demand*". The notation is better and it is more intuitive.

<sup>&</sup>lt;sup>2</sup>In eq. (2), where we use c, the textbook uses mpc, and where we have b the textbook uses c. Our notation is easier to manage.

- $\overline{C}$  : exogenous consumption expenditures
- *Y* : GDP, income, or "output"
- *T* : income taxes
- $Y_D$  : disposable income
- r : real interest rate
- c > 0: parameter (known as the "marginal propensity to consume")
- b > 0 : parameter

### **Investment Expenditures**

• In a developed market economy, the level of investment depends upon:

- $\overline{I}$ : exogenous investment (the textbook calls it "Autonomous" investment)
- +  $r_i$  : real interest rate charged on investments
- Banks charge  $r_i$  as the sum of the risk-free market real interest rate (r) and the risk-premium or spread  $(\overline{f})$ :<sup>3</sup>

$$r_i = r + \overline{f}$$

• Therefore, the demand expenditures on investment G&S will be given by:

$$I = \overline{I} - d \cdot \left(r + \overline{f}\right)$$

• where *d* is a parameter: (d > 0)

## **Financial Frictions and Investment**

In the great financial crisis of 2007-2010, the inverse relationship between  $(\overline{f})$  and I can be easily spotted in the figure below:  $\uparrow \overline{f}, \downarrow I$ , despite (i) going down. And  $\downarrow \overline{f}, \uparrow I$ , despite i remaining at 0%.



<sup>&</sup>lt;sup>3</sup>The textbook calls  $\overline{f}$  a *financial friction*. The three terms represent the same thing: a measure of risk.

#### **Government Expenditures and Income Taxes**

- The level of government expenditures on G&S is a result of a political decision in the Parliament
- So (*G*) is *exogenously* determined:

$$G = \overline{G}$$

#### **Government Expenditures and Income Taxes**

• The level of income taxes (T) increases with income, so we could describe taxes with the following tax function:

$$T = \overline{T} + t \cdot Y$$

where t is the marginal income tax rate.

 However, for simplicity, we will assume that the level of income taxes is also exogenously determined:

$$T = \overline{T}$$

• This simplification will not significantly change our results in this course.

#### **Net-Exports Expenditures**

Net-exports expenditures are made up of two components:

- Autonomous net exports  $(\overline{NX})$
- Net exports affected by changes in real interest rates (r)
- Putting together these two components, we get:

$$NX = NX - x \cdot r$$

where x > 0 is a parameter.

- Why are net exports negatively dependent on the real interest rate?
- See next slide.

#### Why r Affects Net-Exports?

**An example**. Suppose the ECB (European Central Bank) reduces interest rates in the EuroZone (EZ):

 $\downarrow r_{_{(EZ)}}$ 

- This leads to *financial investments* denominated in € becoming less internationally attractive: they now have a lower return.
- Lower demand for € in the foreign exchange markets, leads to a *depreciation* of the € against other currencies.

- A depreciated € leads to G&S produced in the EuroZone becoming relatively less expensive than before, resulting in an *increase in NX* from Euro countries.
- So:  $\downarrow r \Rightarrow$  national currency depreciates  $\Rightarrow \uparrow NX$

## 2. The IS Curve

## The Relationship Betwwen GDP and Demand

. . .

From **eq.** (1), we saw that the level of aggregate demand is given by:

$$D = C + I + G + NX$$

• • •

And from week 2, we know that GDP (Y) can be calculated by the sum of all expenditures on final G&S. So we must have:

$$Y = D$$

. . .

Therefore, we can relate GDP with the demand side by writing:

$$Y = C + I + G + NX$$

Eq. (10) allows us to obtain a very simple and useful curve: IS curve

#### **Derivation of the IS Curve**

To obtain an equation that reflects the impact of demand forces on the level of GDP (Y), we have to do as follows:

• • •

$$Y = C + I + G + NX$$

. . .

$$Y = \underbrace{\overline{C} + c \cdot \left(Y - \overline{T}\right) - b \cdot r}_{=C} + \underbrace{\overline{I} - d \cdot \left(r + \overline{f}\right)}_{=I} + \underbrace{\overline{G}}_{=G} + \underbrace{\overline{NX} - x \cdot r}_{=NX}$$

. . .

Rearranging better the previous equation, we get:

$$Y = \overline{C} + \overline{I} - d \cdot \overline{f} + \overline{G} + \overline{NX} - c \cdot \overline{T} + c \cdot Y - (b + d + x) \cdot r$$

• • •

Smplify the exposition, by grouping together all the elements with an over bar, and call it the *Exogenous/Autonomous Aggregate Demand*:

#### **Derivation of the IS Curve (continuation)**

Inserting eq. (12) into eq. (11), we get a very simple equation:

$$Y = \overline{A} + c \cdot Y - (b + d + x) \cdot r$$

. . .

which can be solved for Y as follows:

$$Y = \frac{1}{1-c} \cdot \overline{A} - \frac{(b+d+x)}{1-c} \cdot r$$

. . .

But we can simplify it even further:

$$Y = m \cdot \overline{A} - m \cdot \phi \cdot r$$

- $\frac{1}{1-c} = m \rightarrow m$  is a parameter know as the *demand multiplier*
- $\dot{b} + d + x = \phi \rightarrow \phi$  is a parameter (or a sum of parameters)

#### The IS Curve: Summary

**i** Definition: IS curve

For the set of parameters  $\{m, \phi\}$ , the level of Aggregate Demand and GDP (D, Y) is positively affected by the level of the autonomous/exogenous aggregate demand  $(\overline{A})$ , and negatively by the level of the real interest rate (r):

 $Y = m \cdot \overline{A} - m \cdot \phi \cdot r$ 

. . .

• Notice that, to simplify things, we have defined:

• 
$$m = \frac{1}{1-c} > 1$$
  
•  $\phi = b + d + x > 0$ 

 $\blacktriangleright \ \overline{A} = \overline{C} + \overline{I} - d \cdot \overline{f} + \overline{G} + \overline{NX} - c \cdot \overline{T}$ 

#### **IS Curve: Graphical Representation**

For a given level of  $(\overline{A})$ , an increase in (r) will cause a reduction in aggregate demand (D), which will lead to a decline in GDP (Y), and *vice-versa*.

. . .



A movement along the IS curve

- $\Delta r = +2pp$
- $\Delta \overline{A} = 0$
- $\Delta Y = -2trillion$
- If  $\Delta \overline{A} \neq 0$ , the **IS** would shift to the right/left

# 3. Forces that Shift the IS Curve

### **Exogenous Demand and Shifts in the IS Curve**

• Recall that the exogenous/autonomous aggregate demand is given by:<sup>4</sup>

$$\overline{A} = \overline{C} + \overline{I} - d \cdot \overline{f} + \overline{G} + \overline{NX} - c \cdot \overline{T}$$

- A change in any of these components of  $\overline{A}$  will force the **IS** curve to shift.
- For example, consider an increase in public spending:  $\Delta \overline{G} > 0$ . From the expression above we get:

$$\Delta \overline{A} = \Delta \overline{G} > 0$$

• However, from the **IS** curve we know that:

$$\Delta Y = m \cdot \Delta \overline{A} \quad \Rightarrow \quad \Delta Y = m \cdot \Delta \overline{G}$$

• Because m > 1, we have:  $\uparrow \overline{G} \Rightarrow \uparrow \overline{A} \Rightarrow \uparrow Y$ : the **IS** curve shifts to the right

## Another Example of a Shift in the IS Curve

- The exogenous aggregate demand:  $\overline{A} = \overline{C} + \overline{I} d \cdot \overline{f} + \overline{G} + \overline{NX} c \cdot \overline{T}$
- A change in the spread (or as the textbook calls it: the "financial friction") will also shift the **IS** curve. Suppose that the spread increases by 4 percentage points:

$$\Delta \overline{f} = +4pp$$

• From the exogenous aggregate demand expression above we get:

$$\Delta \overline{A} = -d \cdot \Delta \overline{f} = -d \times 4pp$$

• However, from the **IS** curve we know that:

$$\Delta Y = m \cdot \Delta \overline{A} \quad \Rightarrow \Delta Y = m \cdot (-d \times 4pp)$$

• Because m > 1, d > 0, we have:  $\uparrow \overline{f} \Rightarrow \downarrow \overline{A} \Rightarrow \downarrow Y$ : the **IS** curve shifts to the left

## A Shift in the IS: a Graphical Example

If  $\uparrow \overline{G} \Rightarrow \uparrow \overline{A} \Rightarrow \uparrow Y$ , the **IS** shifts to the right:

. . .

<sup>&</sup>lt;sup>4</sup>No need to memorize this expression. Try to understand which ones have a negative/positive impact upon  $\overline{A}$ .



• The IS shifts to the right for any r level

- The shift is the same for r=3%, r=1%, r=0% , or ...

# A Shift in the IS: another Graphical Example

If  $\uparrow \overline{T} \Rightarrow \downarrow \overline{A} \Rightarrow \downarrow Y$ , the **IS** shifts to the left:

• • •



• The IS shifts to the left for any r level

- The shift is the same for r=3%, r=1%, r=0% , or ...

# The Multiplier of Aggregate Demand

- An increase/decrease in  $\overline{A}$ , will shift the **IS** curve leading to an increase/decline in aggregate demand and GDP. **But by how much**?
- It will depend upon the value of the demand multiplier m and the value of the shock.
- As 0 < c < 1, then  $\ m=\frac{1}{1-c}>1 \quad \forall ad \quad V = m \quad \forall ad \quad v = m \quad overline{A} \quad ad \quad v = \frac{1}{1-c}>1 \quad v = \frac{1}{1$
- Where  $\overline{A}=\overline{C}+\overline{I}-d\cdot\overline{f}+\overline{G}+\overline{NX}-c\cdot\overline{T}$
- One shock upon  $\overline{A}$  is *amplified/multiplied* through the other components of expenditure: the higher c is, the higher will be m.

# A Textbook Useful Table

| Variable                                                     | Change in<br>Variable | Shift in<br><i>IS</i> Curve | Reason                                              |
|--------------------------------------------------------------|-----------------------|-----------------------------|-----------------------------------------------------|
| Autonomous consumption expenditure, $\overline{\mathcal{C}}$ | $\uparrow$            | $\rightarrow$               | $C \uparrow Y \uparrow$                             |
| Autonomous investment, $\overline{I}$                        | $\uparrow$            | $\rightarrow$               | /↑ <i>Y</i> ↑                                       |
| Government spending, $\overline{G}$                          | $\uparrow$            | $\rightarrow$               | $G\uparrow Y\uparrow$                               |
| Taxes, T                                                     | $\uparrow$            | $\leftarrow$                | $T\uparrow \Longrightarrow C\downarrow Y\downarrow$ |
| Autonomous net exports, $\overline{NX}$                      | $\uparrow$            | $\rightarrow$               | $\overline{NX}\uparrow Y\uparrow$                   |
| Financial frictions, $\overline{f}$                          | $\uparrow$            | $\leftarrow$                | $/\downarrow Y\downarrow$                           |

# SHIFTS IN THE *IS* CURVE FROM AUTONOMOUS CHANGES IN $\overline{C}$ , $\overline{I}$ , $\overline{G}$ , $\overline{T}$ , $\overline{NX}$ , and $\overline{f}$

*Note:* Only increases ( $\uparrow$ ) in the variables are shown; the effects of decreases in the variables on planned expenditure and aggregate output would be the opposite of those indicated in the last two columns.

# 4. Readings

## Readings

Read **Chapter 9** of the adopted textbook:

Frederic S. Mishkin (2015). Macroeconomics: Policy & Practice, Second Edition, Pearson Editors

# Bibliography